考虑非牛顿流体螺旋流动的钻井井筒温度场研究

2014年 42卷 第5期
阅读:139
查看详情
Research on Wellbore Temperature Field with Helical Flow of Non-Newtonian Fluids in Drilling Operation
李梦博 柳贡慧 李军 魏晓强 高海军
Li Mengbo Liu Gonghui Li Jun Wei Xiaoqiang Gao Haijun
中国石油大学(北京)石油工程学院, 北京 102249; 北京信息科技大学, 北京 100192; 中国石油长城钻探工程有限公司钻井三公司, 辽宁盘锦 124010; 中国石油长城钻探工程有限公司钻井一公司, 辽宁盘锦 124010
College of Petroleum Engineering, China University of Petroleum(Beijing), Beijing, 102249, China; Beijing Information Science & Technology University, Beijing, 100192, China; No.3 Dril-ling Company, CNPC Greatwall Drilling Company, Panjin, Liaoning, 124010, China; No.1 Drilling Company, CNPC Greatwall Drilling Company, Panjin, Liaoning, 124010, China
准确了解钻井过程中井筒温度及其变化规律对于安全、高效钻井具有重要的意义。根据热力学第一定律及传热理论,建立了完整的钻井循环过程中温度场数学模型,分析了井筒中非牛顿流体螺旋流动的传热机理以及水力学能量和机械能量对井筒温度场的影响规律,对高温高压循环当量密度计算和井筒温度控制方法进行了初步探讨。模型计算结果与现场试验数据吻合较好。由数值模拟结果得出:在井深2 000.00 m处,钻柱转速从0 r/min升至200 r/min时该处温度升高4.5 ℃;在井深5 000.00 m处,钻柱转速从0 r/min升至200 r/min时该处温度升高7.8 ℃。研究结果表明,井底温度随钻柱转速的增加呈指数增长,随着井深的增加,钻柱旋转对井底温度的影响更加明显。建立的温度场模型可为高温高压地层钻井水力学设计和现场作业过程中的温度控制提供理论参考。
Understanding wellbore temperature and its changing regularity is very critical for drilling safely and efficiently.According to the first law of thermodynamics and heat transfer theory,a complete temperature field mathematical model for drilling circulation was established.The heat transfer mechanism in spiral flow of non-Newtonian fluid in wellbore and the effect of hydraulic energy and mechanical energy on wellbore temperature field were analyzed.A preliminary discussion was conducted regarding calculation of ECD under high temperature and high pressure and control over wellbore temperature.The model results matched well with field experimental data.Numerical simulation indicated bottomhole temperature increased by 4.5 ℃ at the depth of 2 000 m,and 7.8 ℃ at 5 000 m respectively when the rotary speed of drillstring rose from 0 r/min to 200 r/min.The bottomhole temperature increased exponentially with the increase of rotary speed,the drill string rotary speed had much higher effects on bottomhole temperature with the increase of well depth.This model can provide a theoretical reference for hydraulic design of drilling in HTHP formation and temperature control during field operations.
钻井; 井筒温度; 非牛顿流体; 数学模型;
drilling; wellbore temperature; non-Newtonian fluid; mathematical model;
国家重点基础研究发展计划("973"计划)项目"深井复杂地层安全高效钻井基础研究"(编号:2010CB226700)、国家自然基金重点项目"控压钻井测控理论及关键问题研究"(编号:51334003)、国家自然科学基金面上项目"控压钻井井筒多相流体瞬态变质量流动理论及工况解释方法研究"(编号:51274045)和国家自然科学基金面上项目"深层碳酸盐岩地层与井筒耦合作用机理与压力自动控制方法研究"(编号:51274221)联合资助。
https://doi.org/10.11911/syztjs.201405013