论文详情
深水浊积水道典型切叠模式水驱波及实验研究
西南石油大学学报(自然科学版)
2022年 44卷 第4期
阅读:149
查看详情
Title
Experimental of Water Drive Sweep Efficiency for Typical Stacking Mode of Deep Water Channel
Authors
YANGLi
HUYisheng
LIUGuangwei
GUOPing
YANGBaoquan
单位
中国海洋石油国际有限公司, 北京 朝阳 100020
油气藏地质与开发工程国家重点实验室 · 西南石油大学, 四川 成都 610500
Organization
CNOOC International Limited, Chaoyang, Beijing 100020, China
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
摘要
针对典型的深水浊积复合水道切叠模式,建立大尺度二维剖面物理模型,开展水驱室内实验,并通过岩芯尺度数值模拟进一步探究总结了不同横向和纵向水道叠置比例对波及规律的影响。结果表明,水道中部及两期水道切叠连通处为主流线区域,波及效率和驱油效率均较高,水道上部和下部物性相对较差区域波及效率低,尤其生产井所在水道上部剩余油富集,是剩余油挖潜重点区域;不同期次水道叠置比例是影响复合水道注采井间连通性及剩余油分布的重要因素,横向和纵向叠置比例越高,整体表现为注采井主流线区波及效果越好,非主流线区波及效果变差;对于典型深水浊积复合水道切叠构型模式,建议尽量提高非主力砂体射孔完善程度,以增加波及效率,提高采收率。
Abstract
Aiming at the typical deep-water turbidite composite stack channel model, a large-scale two-dimensional physical model was established, and the water drive laboratory experiment was carried out. The core-scale numerical simulation was further explored to study the influence of the different horizontal and vertical stacking ratio to the development performance. Results show that the middle part of the channel and the overlapping area are the main flow line area, with high sweep efficiency and displacement efficiency. While the sweep efficiency is low at the upper and lower parts of the channel with relatively poor physical properties, which also shows higher potential of remaining oil. The stacking ratio of channels in different phases is an important factor affecting the connectivity between injection and production wells and the remaining oil distribution. With higher horizontal and vertical stacking ratio, performance in the main streamline area becomes better, while the sweep efficiency in the non-main streamline area becomes worse. For the typical deep-water turbidite composite channel reservoir, it is recommended to maximize the perforation perfection of non-main sand bodies to increase sweep efficiency and increase recovery.
关键词:
深水浊积砂岩;
切叠模式;
水驱实验;
波及效率;
剩余油;
Keywords:
deep water turbidite sandstone;
stack mode;
laboratory water flooding experiment;
sweep efficiency;
remaining oil;
DOI
10.11885/j.issn.1674-5086.2021.11.25.02