论文详情
用深度学习挖掘油田开发指标预测模型的知识
西南石油大学学报(自然科学版)
2020年 42卷 第6期
阅读:178
查看详情
Title
Knowledge Mining for Oilfield Development Index Prediction Model Using Deep Learning
Authors
ZHONGYihua
WANGShuning
LUOLan
YANGJinlian
YUEYongpeng
单位
西南石油大学理学院, 四川 成都 610500
西南石油大学人工智能研究院, 四川 成都 610500
北京知道创宇信息技术有限公司成都分公司, 四川 成都 610000
Organization
School of Science, Southwest Petroleum University, Chengdu, Sichuan 610500, China
Institute for Artificial Intelligence, Southwest Petroleum University, Chengdu, Sichuan 610500, China
Chengdu Branch, Beijing KnownSec Information Technology Co. Ltd, Chengdu, Sichuan 610000, China
摘要
油田开发指标变化特征被当作油田开发规划、油田开采状况评价、油田开发方案设计与调整及油田开发风险预测预警等决策管理问题的重要依据。针对至今没有很好解决的建立智慧油田的瓶颈问题之一——油田开发指标智能预测系统的选择预测方法和模型的知识挖掘问题,基于油田开发的海量数据,利用深度学习的卷积神经网络和循环神经网络,提取反映油田开发动态特征和知识。在此基础上,结合已建立的油田开发指标预测的模型库及知识库,利用深度学习的实体和关系的联合提取方法,提出通过油田开发输入信息、油田开发动态特征指标、油田开发指标预测的模型库和知识库挖掘选择油田开发指标最佳预测模型的知识方法。概念设计的模拟实例表明,提出的知识挖掘流程可实现只要输入油田开发的相关信息,就能自主获得恰当的油田开发指标预测模型。
Abstract
The changing characteristics of oilfield development index are regarded as the important basis of oilfield development planning, oilfield exploitation evaluation, oilfield development scheme design and adjustment, decision management problems of oilfield development risk prediction and early warning, etc. For one of the unsolved bottleneck problem of building intelligent oilfield, i.e. the problem on knowledge mining of selecting prediction method and model of oilfield development indexes intelligent prediction system, based on the massive data of oilfield development, this paper uses the convolutional neural network and cyclic neural network of deep learning to extract the characteristics and knowledge reflecting the development dynamic of oilfield. On this basis, combining the model base and knowledge base of oilfield development index prediction, a knowledge mining method to select the optimal prediction model of oilfield development index is proposed through the input information and dynamic characteristics index of oilfield development, the model base and the knowledge base of oilfield development index prediction by using the joint extraction method of entity and relationship of deep learning. The simulation example of conceptual design shows that the proposed knowledge mining process may realize autonomous obtaining an appropriate prediction model of oilfield development index as long as inputting relevant information of oilfield development.
关键词:
油田开发指标;
预测模型;
知识挖掘;
深度学习;
实体与关系;
Keywords:
oilfield development index;
prediction model;
knowledge mining;
deep learning;
entities and relationship;
DOI
10.11885/j.issn.1674-5086.2020.05.11.02