论文详情
全金属单螺杆油泵工作性能的全参数分析
西南石油大学学报(自然科学版)
2020年 42卷 第3期
阅读:142
查看详情
Title
Full Parameter Analysis of Working Performance of Metallic Progressing Cavity Oil Pump
Authors
ZHONG Gongxiang
LEI Pengyan
ZHU Lingchuang
单位
西南石油大学石油天然气装备教育部重点实验室, 四川 成都 610500
Organization
MOE Key Laboratory of Oil&Gas Equipment, Southwest Petroleum University, Chengdu, Sichuan 610500, China
摘要
针对全金属单螺杆泵运行参数和结构参数对其工作性能影响不明确的问题,开展了全金属单螺杆泵运行参数和结构参数对泵工作性能影响的研究,研究中采用了基于FLUENT的全金属单螺杆油泵3D数值分析技术,获得了黏度、转速和级增压值对泵的排量、功率、容积效率和系统效率的影响以及定转子间隙、偏心距和定子导程对泵的排量、功率、容积效率和漏失量的影响,并进一步得出了该结构在稠油热采时宜采用较高转速而稠油冷采时宜采用低转速的结论,此外,得出稠油热采时定转子间隙值宜取0.1~0.3 mm、偏心距宜取5.0~6.0 mm、定子导程宜取170~200 mm;稠油冷采时定转子间隙值宜取0.3~0.5 mm、偏心距宜取4.0~5.0 mm、定子导程宜取110~150 mm。
Abstract
Aiming at the problem that the influences of operation parameters and structural parameters of metallic progressing cavity oil pump (PCP) on its working performance is not clear, the influence of operation parameters and structural parameters of metallic PCP on its working performance was studied. The 3D numerical analysis technology of metallic PCP based on FLUENT computational fluid dynamics software was adopted in the study, and the effects of viscosity, rotational speed and pressure increasement of per stage on Pump displacement, power, volumetric efficiency and system efficiency were obtained. The influence of stator-rotor clearance, eccentricity and stator lead on pump displacement, power, volumetric efficiency and leakage are also discussed. It is further concluded that the structure should adopt higher rotational speed in thermal recovery of heavy oil and lower rotational speed in cold recovery of heavy oil. In addition, the recommended clearance value of stator and rotor is 0.1~0.3 mm, the recommended eccentricity value is 5.0~6.0 mm, the recommended stator lead is 170~200 mm, and the recommended clearance value of stator and rotor is 0.3~0.5 mm; in the heavy oil thermal recovery, the recommended eccentricity should be 4.0~5.0 mm, and the stator lead should be 110~150 mm in heavy oil thermal recovery.
关键词:
单螺杆泵;
工作性能;
运动学;
流体分析;
漏失;
Keywords:
progressive cavity pump;
working performance;
kinematics;
fluid analysis;
leakage;
DOI
10.11885/j.issn.1674-5086.2019.02.24.01