海底管道腐蚀速率预测及计算分析

2019年 39卷 第1期
阅读:161
查看详情
Prediction and Calculation Analysis of Corrosion Rate of Submarine Pipelines
王威 陈国民 陈琦 鲁瑜
WANG Wei CHENG Guoming CHENG Qi LU Yu
广东石油化工学院石油工程学院, 广东 525000; 广东省非常规能源工程技术研究中心, 广东 525000; 中海石油(中国)有限公司天津分公司, 天津 300452
College of Petroleum Engineering, Guangdong University of Petrochemical Technology, Guangdong 525000, China; Unconventional Energy Engineering Technology Research Center of Guangdong province, Guangdong 525000, China; Tianjin Branch of CNOOC Ltd., Tianjin 300452, China
为了监测海底管道腐蚀状态,预测管线腐蚀速率,评估管道强度变化情况,通过海底管道腐蚀产物的检测分析,指出海管内部发生气体腐蚀。结合超声导波检测、测厚抽查等方法,通过对腐蚀缺陷进行统计分析,得出海底管道剩余壁厚、腐蚀深度范围等数据,并采用OLGA 7.1软件建立海底管道腐蚀预测模型,计算分析出海底管道的腐蚀速率。结果表明:海管内部结垢后易发生垢下腐蚀,海底管道腐蚀深度为0~6.9 mm,腐蚀速率为0.015~0.022 mm/a,腐蚀速率在管道高程上升段变小、高程下降段变大。研究成果可为海底管道监测与维护提供依据。
In order to monitor the corrosion state of the submarine pipeline, predict the corrosion rate of the pipeline and evaluate the change of pipeline strength, through the detection and analysis of corrosion products of submarine pipeline, it is pointed out that gas corrosion occurs inside the sea pipe. Through the statistical analysis of corrosion defects, the remaining wall thickness and the corrosion depth range of submarine pipeline are obtained by means of magnetic particle detection of weld seam, and the corrosion prediction model of submarine pipeline is established by using OLGA7.1 software. The corrosion rate of submarine pipeline is calculated and analyzed.The results show that the corrosion of submarine pipelines is easy to occur after scaling. The corrosion depth of submarine pipelines is 0~6.9 mm, and the corrosion rate is 0.015~0.022 mm/a. The corrosion rate decreases in the rising section of pipeline elevation and increases in the falling section of pipeline elevation.It provides basis for monitoring and maintenance of submarine pipeline.
海底管道; 腐蚀速率; 预测模型; CO2腐蚀; 计算分析;
submarine pipeline; corrosion rate; prediction model; CO2 corrosion; calculation and analysis;
国家"十二五"科技重大专项(编号:2011ZX05017);广东省非常规能源工程技术研究中心2018年度开放基金立项项目(编号:GF2018B006);茂名市科技计划立项项目(编号:2018011);广东石油化工学院人才引进项目(编号:2018rc08)
https://doi.org/10.3969/j.issn.1008-2336.2019.01.088