Abstract
Thousands of horizontal wells are drilled into the shale formations across the U.S. and hydrocarbon production is substantially increased during past years. This fact is accredited to advances obtained in hydraulic fracturing and pad drilling technologies. The contribution of shale rock surface desorption to production is widely accepted and confirmed by laboratory and field evidences. Nevertheless, the subsequent changes in porosity and permeability due to desorption combined with hydraulic fracture closures caused by increased net effective rock stress state, have not been captured in current shale modeling and simulation. Hence, it is essential to investigate the effects of induced permeability, porosity, and stress by desorption on ultimate hydrocarbon recovery.