论文详情
基于分子模拟的抗稀释流度调控体系的 分子结构与性能关系*
油田化学
2021年 38卷 第1期
阅读:80
查看详情
Title
Relationship between Molecular Structure and Properties of Anti-dilution Fluidity Regulation System Based on Molecular Simulation
作者
王增林
史树彬
田玉芹
刘希明
胡秋平
王捷
Authors
WANG Zenglin
SHI Shubin
TIAN Yuqin
LIU Ximing
HU Qiuping
WANG Jie
摘要
胜利油田特高含水期油藏的非均质性加剧,现有调控体系SP-01 在孤东试验区深度堵调现场试验未达到预 期效果,急需对现有调控体系进行分子结构优化改进。传统的人工设计合成、验证的方法耗时耗力,成本太高。 本文利用计算机分子模拟进一步认识调控机理,研究了聚合物分子结构与分子的流体力学体积或分子间的相互 作用能间的关系,得到了最优的分子结构,按该结构室内合成了聚合物,并对比分析了该聚合物和聚合物SP-01 的增黏性能。分子模拟结果显示,聚合物分子结构与分子的流体力学体积或分子间的相互作用能不是一个简单 的线性关系,需根据聚合物相对分子质量、疏水碳链长度和微嵌段长度的变化确定最佳值。室内新合成聚合物 NSP-02 的相对分子质量和增黏能力均强于聚合物SP-01。室内实验验证结果与计算机分子模拟结果相吻合,计 算机分子模拟能够更加快速有效地指导人工合成。图10表5 参16
Abstract
In Shengli oilfield,the reservoir heterogeneity is intensified in the extra-high water-cut period,so the effective control system must be used to realize the deep control of the formation. The field test of the existing control system SP-01 in the Gudong test area failed to achieve the expected effect,so it is urgent to conduct research on the molecular structure optimization and improvement of the existing control system. Traditional manual design is time-consuming and costly in the synthesis and verification methods. In this paper,the regulation mechanism was furtherly understanded using the computer molecular simulation method,the relationship between the molecular structure of polymer and the fluid mechanics volume or intermolecular interaction energy was studied and the optimal molecular structure was obtained. Moreover,the polymer NSP-02 was synthesized according to the optimal simulated results,and the viscosity-increasing ability of the new synthetic polymer NSP-02 was compared with that of SP-01. The molecular simulation results showed that it was not a simple linear relationship between the molecular structure of polymer and the fluid mechanics volume or intermolecular interaction energy. The optimal molecular structure of polymer should be determined according to the change of the polymer molecular weight,the hydrophobic carbon chain length and micro block length. The molecular weight and viscosity-increasing ability of the new synthetic polymer NSP-02 in the laboratory were both stronger than that of the polymer SP-01. The indoor experimental verification results are consistent with the computer molecular simulation results,so the computer molecular simulation can be faster and more effective to guide artificial synthesis.
关键词:
分子动力学模拟;
疏水缔合聚合物;
溶液性能;
回旋半径;
分子间相互作用能;
Keywords:
molecular dynamics simulation;
hydrophobically associating polymer;
solution property;
radius of gyration;
molecular-interaction energy;
DOI
10.19346/j.cnki.1000-4092.2021.01.021