Department of Petro leum Engineering, Daqing Vocational College, D aqing 163255, China
摘要
建立了单相流体在均质油藏中不稳定渗流条件下的有限元方程, 在空间上用三
角形网格进行剖分, 将井壁视为内边界, 用线性函数描述网格结点的压力变化, 通过求解有限
元方程获得地层压力的变化规律。以内边界定产、外边界封闭的不稳定径向流模型为例, 讨论
网格数、边长比例、时间步长及差分格式对计算精度的影响。结果表明, 有限元法用于求解不
稳定渗流问题是方便有效的。
Abstract
In this paper, the finite elem en t equations are established under the condition o f unsteady flow in the uniform form ation. Sec tion the reg ion w ith tr iangle g rid. T reat the w ell face as in ternal bounda ry. Descr ibe the pressure va riation o f node in gr id w ith linea r function. Obtain the pressure distr ibution by solve the fin ite e lement equation. D iscuss the a ffection on accuracy of the so lution because of the gr id num, the proportion o f the tr iang le sides length, the tim e step and the d ifferenc ing schem e w ith the illustra tion of rad ia l unsteady flow m ode l tha t has an constan t- flow interna l boundary and a closed ex ternal boundary. It has show n that fin ite elem entm ethods is ava ilab le and conven ient to so lve the prob lem of unsteady flow in porous m ed ia.
关键词:
渗流;
有限元法;
Galerkin法;
Keywords:
F low through porous m ed ia, F inite e lem ent m ethod, Ga lerk in m ethod;