摘要
沙罐坪气田石炭系黄龙组主要储集空间为孔隙和裂缝,属于碳酸盐岩低孔低渗型储层,其中,裂缝在改善储层渗透率方面发挥着重要的作用。以测井信息为基础,利用神经网络算法对该区未取芯井储层的孔隙度、渗透率、含水饱和度参数,以及裂缝发育程度进行了预测。使用误差统计法对储层参数预测模型效果进行了评价,其预测效果满足本区所需储层参数计算的精度要求,裂缝预测总体回判率达97.53%。证明了神经网络算法是在测井信息较少的情况下,预测储层的有效手段,为气田评价井、开发井的部署,储量计算及编制气田开发方案,提供了可靠的地质依据。