泥页岩分类的BP神经网络方法

2003年 25卷 第4期
阅读:73
查看详情
PREDICTION OF THE SHALE PERFORMANCE BY THE BP NEURAL NETWORK
刘波 鄢捷年 李静
Liu Bo Yan Jienian Li Jing
石油大学石油天然气工程学院, 北京 102249 中国石化石油勘探开发研究院, 北京 100083
为探讨X衍射资料与泥页岩理化性能之间的定性关系,建立一种智能化模型对泥页岩的类型进行快速识别。在分析泥页岩理化性能与X射线衍射资料数据关系的基础上,提出了用BP神经网络预测泥页岩理化性能参数的方法及相应的模型。并针对BP神经网络算法进行了改进,使模型网络训练时的收敛速度比常规方法快了4倍以上。通过现场试验数据验证,该模型预测符合率较高,能够满足实际应用的要求。
To analyse the relation between the X-Ray data and the shale performance.The model of BP neural network was designed here to predict the shale performance from by the X-Ray data.This model has been modified for good constringency rate more 4 times than that of the conventional methods.Thought the validation of the oil fields data,the model has a good performance and can meet the demand of the practical application.
神经网络; 泥页岩; 预测; 理化性能; 井壁稳定; 模式识别;
neural network; shale; prediction; shale performance; well stability; pattern recognition;
10.3969/j.issn.1000-7393.2003.04.007