遗传算法与神经网络法在碳酸盐岩储集层评价中的应用

2005年 44卷 第No. 3期
阅读:74
查看详情
Using genetic algorithms and neural network to evaluate carbonate reservoir
成都理工大学信息工程与地球物理系油气藏地质与开发工程国家重点实验室,四川成都 610059
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Information Engineering and Geophysics Department, Chengdu University, Chengdu 610059, China
碳酸盐岩储集层的孔隙空间非常复杂,因而进行储集层评价难度很大。近年来.采用神经网络进行储层评价越来越普遍,且取得了较好效果。但由于神经网络存在一些难以克服的缺点.如训练速度慢、网络结构设计缺乏理论指导以及易陷入局部极小点等,使得神经网络的应用受到一定的限制。针对这种情况.提出了利用遗传算法同神经网络相结合的方法来进行储集层评价,在很大程度上弥补了神经网络的这些缺陷。给出了方法的基本理论,并在某地区进行了碳酸盐岩储层评价,评价结果与测井解释和钻井结果吻合得较好。
Carbonate reservoir is more complex It is very difficult to evaluate carbonate reservoir. In recent years, using neural network to evaluate reservoir becomes more and more prevalent, and gets preferable results. However, neural network have some defects, which are difficult to o-vercome, such as low training speed, lack of reasonable guidance on network structure design, getting into local minimum etc. Those defects make application of network confined In this situation, this paper present a method which combines genetic algorithms-neural network to e-valuate reservoir. This method can make up limitations of neural network to maximum extent and have a good effect in some areas reservoir evaluation.
碳酸盐岩; 储集层; 孔隙空间; 遗传算法; 神经网络; 储层评价;
carbonate rock; reservoir; pore space; genetic algorithms; neural network; reservoir evaluation;