基于MPI和CUDA的转换波Kirchhoff叠前时间偏移并行计算

2013年 52卷 第No. 1期
阅读:58
查看详情
Converted-wave Kirchhoff prestack time migration parallel computation based on MPI+CUDA
1.中国石油化工股份有限公司西南油气分公司勘探开发研究院德阳分院,四川德阳618000;2.中国石油
化工股份有限公司多波地震技术重点实验室,四川德阳618000;3.东方地球物理公司科技信息处,河北
涿州072750
Yu Qin,Deyang Branch Institute,Exploration & Production Research Institute,Deyang 618000,China
转换波Kirchhoff叠前时间偏移可以实现全空间三维转换波资料的准确成像。但转换波叠前偏移数据
量巨大,而且需偏移迭代多次来寻找匹配的偏移速度模型,导致偏移处理周期长、效率低,限制了转换
波偏移技术在生产上的应用规模。目前解决海量运算问题的方法主要是应用CPU集群来提高计算效率,
但集群存在成本高、功耗大、占用空间大、维护成本高等缺点。给出了一种基于MPI
(MessagePassingInterface)和CUDA的转换波Kirchhoff叠前时间偏移并行算法,将细粒度线程级的GPU
(GraphicProcessingUnit)并行计算融入粗粒度进程级MPI并行编程模型。利用实际转换波数据分别在CPU(单
核)、GPU(单卡)、MPI和GPU(2个节点)测试平台上对算法性能进行了测试,结果表明,MPI和GPU(2个节点)
的计算速度是CPU(单核)的近400倍,可以大幅度提高转换波Kirchhoff叠前时间偏移的计算效率,降低计算
成本。
Converted-wave Kirchhoff prestack time migration can image accurately in 3-D space.However,the prestack time
migration generates huge computation amount and need migration for several times to discover matched migration
velocity model,which leads to long processing period and low efficiency,and restricts the application scale in
production.Nowadays,CPU-cluster computation is applied widely to solve the problem,but the CPU-cluster has
some disadvantages such as high cost,large power consumption,large space occupation and high maintenance
cost.In order to improve the time-consuming and save the computing cost,we proposed a parallel algorithm of
converted-wave Kirchhoff prestack time migration based on MPI+CUDA,which merged the GPU parallel
computation of fine-grained thread-level into the MPI parallel programming model of coarse-grained process-
level.We tested the performance of the parallel algorithm on CPU (single core),GPU (single card),MPI+GPU (2
nodes).The testing results indicate that the computation speed of the MPI+GPU (2 nodes) platform is nearly 400
times of the CPU’s (single core),largely improves the computation efficiency of converted-wave Kirchhoff prestack
time migration and decreases the computation cost.
转换波地震数据处理; Kirchhoff叠前时间偏移; 集群; 并行计算;
converted-wave data processing; Kirchhoff prestack time migration; cluster; parallel computation;
10.3969/j.issn.1000-1441.2013.01.010