P-P与P-SV波联合反演方法分类与对比

2016年 55卷 第No. 4期
阅读:78
查看详情
Classification and quantitative comparison of P-P and P-SV wave joint inversion methods
(1.中国石油化工股份有限公司石油勘探开发研究院,北京100083;2.页岩油气富集机理与有效开发国家重点实验室,北京100083;3.国家能源页岩油研发中心,北京100083;4.中国石油化工股份有限公司页岩油气勘探开发重点实验室,北京100083;5.中国石油大学(北京),北京102249)
(1.Sinopec Exploration and Production Research Institute,Beijing 100083,China; 2.National Key Laboratory of Shale Oil/Gas Enrichment Mechanism and Effective Development,Beijing 100083,China; 3.National Energy R & D Center of Shale Oil,Beijing 100083,China; 4.Sinopec Key Laboratory of Shale Oil/Gas Exploration and Production Technology,Beijing 100083,China; 5.China University of Petroleum,Beijing 102249,China)

多波资料解释结果不仅取决于联合标定与资料匹配,而且取决于多波联合反演方法。依据实现原理的不同,将P-P与P-SV波联合反演方法分为叠后联合、属性间接联合、两参数直接联合和三参数直接联合四类,利用数值模型定量对比了单一P-P波反演方法和三类叠前P-P与P-SV波联合反演方法的差别。研究结果表明:①弹性参数直接联合反演方法的精度高于单一P-P波反演方法;②AVO属性间接联合反演的精度低于弹性参数直接联合反演;③噪声严重时,考虑到弹性参数相关性的属性间接联合、两参数直接联合反演方法可以在弹性参数相关性较好的情况下获得更加稳定的密度反演结果。

The interpretation of multi-components seismic data is not only dominated by the integrated calibration and matching degree of P-P and P-SV wave data,but also affected by the effectiveness of corresponding P-P and P-SV wave joint inversion.In this paper,all the published P-P and P-SV joint inversion methods are classified into four types.Subsequently,a set of 2D numerical data is adopted to test the effectiveness of conventional P-P wave inversion and three types of prestack P-P and P-SV wave joint inversion.It is revealed that the inversion results of direct elastic parameters joint inversion are more accurate than that of the conventional P-P wave inversion.Moreover,the indirect attributes joint inversion is inferior to direct elastic parameters joint inversion.Particularly,the indirect attribute and direct two-term joint inversion could produce more steady density results in a noisy environment if the inversion parameters have good correlations.

多波勘探; 联合反演; 属性反演; 弹性参数;
multiwave exploration,; joint inversion,; attributes inversion,; elastic parameter;

国家重点基础研究发展计划(973计划)项目(2014CB239104)和国家科技重大专项(2016ZX05049002)联合资助。

10.3969/j.issn.1000-1441.2016.04.014