f-x域经验模式分解与多道奇异谱分析相结合去除随机噪声

2016年 55卷 第No. 1期
阅读:94
查看详情
Random noise attenuation based on EMD and MSSA in f-x domain
(1.中国石油化工股份有限公司上海油气分公司研究院,上海200120;2.德克萨斯大学奥斯汀分校,德克萨斯州奥斯汀TX73301)
(1.Shanghai Offshore Oil & Gas Company,SINOPEC,Shanghai 200120,China;2.University of Texas at Austin,Austin TX73301,USA)

近年来,经验模式分解法(EMD)因其处理非稳态地震信号的能力和易于实现而备受关注。总结了EMD在地震去噪中的应用情况,提出了一种基于f-x域EMD和多道奇异谱分析(MSSA)相结合的去噪新方法。该方法不同于f-x域EMD分别与f-x域预测滤波、小波阈值、曲波变换等相结合的各种去噪方法,它可以得到比f-x域MSSA更高的信噪比并能预测f-x域EMD中损失掉的线性能量。该方法的实现过程为:首先,对地震剖面应用f-x域EMD,保留所有相对水平的同相轴,这样在噪声剖面中留下很少的倾斜信号和随机噪声,然后在差异剖面中应用f-x域MSSA恢复倾斜信号,最后将水平信号和倾斜信号相加得到去噪剖面。理论测试和实际数据的处理结果验证了该方法的优越性。

 In recent years,empirical mode decomposition (EMD) has gotten a lot of public attention due to its capability in processing non-stationary seismic signal and its convenience to implement.In this paper,we summarized the existing applications of EMD in seismic data denoising,and proposed a new approach combining EMD in f-x domain and multi-channel singular spectrum analysis (MSSA) to attenuate random noise.Comparing those approaches combining f-x EMD with other methods such as prediction filtering in f-x domain,wavelet threshold and curvelet transformation,the new approach can obtain higher SNR compared to f-x MSSA and can predict the lost linear energy due to f-x EMD.The workflow of the method is as follows:implementing f-x EMD to the given seismic data at first,all the relative horizontal events can be retained,leaving part of useful dipping signals and some random noises in the difference profile;then f-x MSSA can be used in the difference profile to restore dipping signals;finally resultful profile can be gotlen by horizontal signals plus dipping signals.Two synthetic and a real data examples demonstrate the superiority of the proposed approach.

去除随机噪声; 经验模式分解法; 多道奇异谱分析法; f-x域; 恢复倾斜同相轴;
random noise attenuation,; empirical mode decomposition (EMD),; multi-channel singular spectrum analysis (MSSA),; f-x domain,; dipping event restoration;
10.3969/j.issn.1000-1441.2016.01.009