直接利用地震资料进行含油气性检测在海洋深水油气勘探中尤为重要,但是利用单一属性或参数进行油气检测存在多解性和不确定性。以赤道几内亚深水沉积目标为例,基于部分叠加角道集,利用振幅属性、频率属性、分频技术、波形分类技术以及远道叠加数据与近道叠加数据交会分析等技术手段进行综合油气检测,预测了油气分布范围,预测结果与钻井结果以及已知的油气水分布吻合较好,有效排除了“假亮点”等非含气目标,提高了烃类检测的精度和可靠程度,取得了良好的应用效果,同时形成了一套适合海洋深水沉积储层烃类检测的方法和流程。
Exploration of hydrocarbons in offshore deep-water reservoirs using seismic data is a highly relevant task.However,detection by a single attribute or parameter of seismic data leads to a high level of uncertainty.Here we use an example of the deep-water sedimentary hydrocarbon reservoir of the Gulf of Equatorial Guinea to detect hydrocarbons based on partial stack angle gathers.We used five techniques for hydrocarbon exploration,namely,seismic amplitude and frequency attribute,spectrum decomposition,waveform classification and crossplot analysis of far offset stack and near offset stack data.The distribution of hydrocarbons in the study area was detected using the abovementioned techniques,and the predicted results agreed with the drilling data and the known reservoir fluid distribution.Moreover,we discovered that the proposed method can effectively eliminate false bright spot anomalies and other non-gas bearing prospects,thus improving the accuracy and reliability of hydrocarbon detection,which can support seismic hydrocarbon exploration in offshore deep-water sedimentary hydrocarbon reservoirs.
中国石油科学研究与技术开发项目“海外海域油气地质条件与关键评价技术研究”(2016D-4303)资助。