如何消除近地表对地震波场造成的影响是高分辨率反射地震勘探需要解决的核心问题之一。复杂的近地表地震-地质条件不但会严重影响采集参数的选择,而且会引起地震波能量被强烈吸收和衰减,并导致严重的静校正问题,获得精细的近地表结构特征及准确的参数模型是解决这些问题的关键。概述了近地表基本地质特征及其对地震波场的影响,回顾了近地表结构调查的方法和手段,系统总结了当前近地表地震波能量吸收衰减与Q补偿、速度反演与近地表结构参数建模的研究现状,深入分析了目前近地表结构参数获取及建模存在的问题和面临的挑战,针对日趋复杂的近地表地震地质条件和地震资料“三高”处理要求的不断提高,指出未来仍然需要在近地表地震波场传播规律及能量吸收衰减机理、联合反演、全波形反演、反射资料中的面波成像等方面进行持续深入的研究,以期获得精度更高的近地表结构及参数模型,使近地表对地震波场造成的不利影响得到有效控制。
Abstract: The adverse effects of nearsurface structures on the seismic wave field are one of the core issues that need to be addressed in highresolution reflective seismic exploration.Complex near-surface seismic-geological conditions can seriously affect the selection of acquisition parameters,and cause strong absorption and attenuation of seismic energy,prompting a serious static correction.Obtaining fine nearsurface structural features and accurate parametric models is the key to solve these issues.In this paper,the basic near-surface geological features and their effects on the seismic wave field are summarized.The methods and techniques of near-surface structure investigation are reviewed.The research status of current nearsurface seismic wave energy absorption attenuation and Q compensation,velocity inversion,and near-surface structure parameter modeling are summarized systematically.The problems and challenges in the acquisition and modeling of near-surface structure parameters are analyzed.It is pointed out that the near-surface seismic-geological conditions are becoming more and more complex,and seismic data processing is becoming increasingly demanding.Further research is required in the future on the near-surface seismic wave field propagation law,energy absorption and attenuation mechanisms,joint inversion,full-waveform inversion,and surface wave imaging in reflection data.It is expected that such research will lead to more accurate identification of near-surface structures and parametric models,so that the adverse effects of poorly characterized near-surface structures on the seismic wave field will be reduced.
国家自然科学基金(41874123)、中国石油科技创新基金项目(2014D-5006-0303)和陕西省自然科学基础研究计划重点项目(2017JZ007)共同资助。