基于样本选取和多种质控的地震层位智能拾取

2022年 61卷 第No. 5期
阅读:74
查看详情
Intelligent seismic horizon picking based on sample selection and various quality control measures
(中国石油大学(北京)地球物理学院,北京102249)

(School of Geophysics,China University of Petroleum-Beijing,Beijing 102249,China)
地震层位拾取是构造解释、地震反演和储层预测等工作的基础。现有的地震层位智能拾取方法常常没有充分利用地震数据及属性对训练样本选取、网络建模和结果分析等进行质控。为此,提出一种基于样本选取和多种质控的地震层位智能拾取方法。该方法采用一种考虑数据集生成方向、训练样本尺度大小和标签错误程度的样本选取策略实现基于U型神经网络的层位智能拾取,并引入层拉平、层位闭合、等t0图、地质导向相位切片和均方根振幅切片等地球物理质控手段检验样本选取策略的合理性,指导构建最佳的智能拾取模型,从而实现了多套目的层位的同时拾取,保证了层位拾取的可靠性与合理性。三维裂缝物理模拟数据和三维实际数据试验结果表明:①沿地质结构特征复杂方向准备的地震样本与标签,所建立的层位智能解释模型刻画断层细节和裂缝内幕的能力更强;②使用大尺度的地震剖面训练网络拾取层位效果更好,刻画层位细节更丰富,一定程度上能减少地质假象的产生;③在层位上下15ms范围内标签随机出错20%时,U型神经网络仍然能够准确拾取目的层位;④样本尺度大小较数据集生成方向更能影响层位智能拾取模型的泛化性。
Seismic horizon picking is the foundation of structural interpretation,seismic inversion,and reservoir prediction.Current intelligent seismic horizon picking methods have not utilized the inherent characteristics of seismic data and their attributes to supervise the crucial steps,including sample selection,network modeling,and result analysis.Therefore,an intelligent seismic horizon picking method based on sample selection and multiple quality control measures is proposed.The method adopts a novel sample selection strategy,which considers the generation direction of the data set,the size of training sample,and the degree of labeling errors to realize intelligent horizon picking using a U-shaped neural network.A variety of geophysical quality control methods including horizon flattening,horizon tie,t0 contour,geosteering phase slice,and root mean square amplitude slice are introduced to verify the rationality of the sample selection strategy and guide the establishment of the optimal intelligent picking model.The optimal horizon-picking model can allow the simultaneous tracking of multiple target horizons and ensure the reliability and rationality of the picked horizons.Conclusions can be drawn from the tests of 3D fracture physical simulation data and 3D field data.①The intelligent horizon interpretation model established by seismic samples and labels extracted along the spatial direction with complex geological structure features can describe the details related to small-scale faults and fractures.②The neural networks trained by large-size seismic profiles can characterize horizons with comparatively more detail and reduce the occurrence of geological artifacts.③The horizon labels have 20% random errors within ±15m around the correct horizons,and the U-shaped neural network can identify target horizons with high precision.④The sample size has a greater influence on the generalization of the intelligent horizon-picking model than the dataset generation direction.
层位拾取; 样本选取; 地球物理质控; 地震解释; 地震属性; 人工智能;
horizon picking;; sample selection;; geophysical quality control;; seismic interpretation;; seismic attribute;; artificial intelligence;
基金项目:国家重点研发计划(2018YFA0702504)、国家自然科学基金(41974140)以及中国石油天然气集团有限公司中国石油大学(北京)战略合作科技专项(ZLZX2020-03)共同资助。
10.3969/j.issn.1000-1441.2022.05.009