二氧化碳地质封存地球物理监测: 现状、挑战与未来发展

2023年 62卷 第No. 2期
阅读:278
查看详情
Geophysical monitoring for geological carbon sequestration: present status, challenges, and future development
赵改善
Gaishan ZHAO
中石化石油物探技术研究院有限公司, 江苏南京 211103
Sinopec Geophysical Research Institute Co., Ltd., Nanjing 211103, China

全球气候变暖成为人类生存和可持续发展面临的重大挑战, 碳中和与绿色低碳化发展成为世界各国的普遍共识与共同行动。将无法减排的二氧化碳等温室气体捕集应用和封存, 是绿色低碳化发展道路上实现零碳甚至负碳目标必不可少的技术途径、关键托底技术和最后手段, 也是化石能源清洁化利用的重要配套技术, 是构建兼具韧性与弹性能源系统的关键技术。二氧化碳地质封存具有规模化应用的巨大潜力和较好的商业化应用前景, 并已有较长时间的技术探索和示范应用基础。地球物理技术在二氧化碳地质封存工程中具有独特且不可或缺的作用, 其作用主要表现在3个方面: ①二氧化碳地质封存空间的选择和评价; ②封存有效性监测与评价; ③封存安全性监测与评价。二氧化碳地质封存的地球物理监测以时延地球物理方法为主, 即通过地球物理重复观测实现对二氧化碳封存过程的动态监测。地球物理方法以地震方法为主, 包括三维地震、井间地震、井中地震、微地震等, 其它还有卫星遥感、时延电磁、时延重力和测井等方法。相对油气勘探来说, 二氧化碳地质封存中的地球物理监测技术应用存在一些特殊要求, 包括永久性(或长期重复性和连续性)、动态性和低成本, 尚面临着一系列技术性与经济性问题与挑战。二氧化碳地质封存地球物理监测技术体系尚不成熟, 有待进一步完善和优化, 以期在监测系统的有效性、高效性、经济性等方面实现良好的综合平衡和优化。多种地球物理监测技术的联合应用、DAS与节点地震仪永久部署、被动源微地震监测、自动化处理与智能化分析是未来重要发展方向。

Global warming has become a major challenge to human survival and sustainable global development, whereas carbon neutrality and green low-carbon development have become the common consensus and path of action in nearly all countries.The capture, utilization, and storage of carbon dioxide and other greenhouse gases that cannot be reduced is an indispensable technical approach, key backing technology, and final means to achieve the goal of zero carbon or even negative carbon on the path of green low-carbon development.It is also an important supporting technology for the clean use of fossil energy and a key technology in building tenacious and elastic energy systems.Geological carbon sequestration has great potential for large-scale and commercial application, and has a long period of time for technical exploration and demonstration application basis.Geophysical technology plays a unique and indispensable role in the geological storage of carbon dioxide and mainly includes three aspects: the selection and evaluation of geological carbon storage sites, monitoring and evaluation of the effectiveness of geological storage as well as geological storage safety.Geophysical monitoring of geological carbon storage is mainly based on time-lapse geophysical methods, which implies that dynamic monitoring of the carbon storage process is achieved through repeated geophysical observations.Geophysical methods are mainly seismic, including 3D seismic, cross-well seismic, borehole seismic, and microseismic methods; as well as other methods such as satellite remote sensing, time-lapse electromagnetics, time-lapse gravity, and logging.Compared with that of petroleum exploration, the application of geophysical monitoring technology in geological carbon sequestration has special requirements including permanence (long-term repeated and continuous monitoring), dynamics, and low cost.Nevertheless, it still faces a series of technical and economic problems and challenges.Geophysical monitoring technology for geological carbon sequestration is not yet optimal, and requires further improvement and optimization to achieve a comprehensive balance in terms of effectiveness, efficiency, and economy.The joint application of various geophysical monitoring technologies, the permanent deployment of DAS and seismic nodes, passive microseismic monitoring, automatic processing, and intelligent analysis are important future development directions.

碳中和; 二氧化碳捕集和封存; 二氧化碳地质封存; 动态监测; 有效性监测; 安全性监测; 地球物理监测; 时延地球物理;
carbon neutrality; carbon capture and storage (CCS); geological sequestration of carbon; dynamic monitoring; effectiveness monitoring; safety monitoring; geophysical monitoring; time-lapse geophysics;
10.3969/j.issn.1000-1441.2023.02.002