纵波(P)和横波(S)波场分解对弹性介质中的多分量地震波成像至关重要, 但是常规P-S波波场分解方法精度相对较低, 且存在成像假象的问题。为此, 构建了一种基于全卷积神经网络(FCN)的网络结构, 用于二维各向同性弹性介质地震波场的P-S波波场分解。该网络由全卷积神经网络构建, 使用合成波场快照进行训练, 训练完成的网络类似空间滤波器, 可实现高精度的P-S波波场分解。不同于基于傅里叶变换的P-S波波场分解方法, 该方法可以在波场任意空间位置处开展P-S波波场分解, 因此适用于面向目标的地震成像。合成数据的计算示例表明, 基于全卷积神经网络的纵横波波场分解方法可有效分解P波和S波波场, 且精度高于其他空间域分解方法。弹性波逆时偏移成像结果表明, 使用基于全卷积神经网络(FCN)的P-S波波场分解方法所获得的基于P波和S波的地震波成像结果, 可有效减少速度界面处的成像假象, 提高复杂地质条件下的多波成像精度。
P- and S-wave decomposition is essential for imaging multi-component seismic data in elastic media, but conventional decomposition methods suffer from low accuracy and imaging artifacts.A data-driven workflow is proposed to obtain a set of neural networks that are highly accurate and artifact-free for decomposing the P- and S-waves in two-dimensional (2D) isotropic elastic media.The neural networks are fully-convolutional neural networks (FCN) working as a spatial filter to decompose P- and S-waves with a high accuracy.Different from the P-S decomposition algorithms using the Fourier transform, the spatial filters are more flexible in decomposing P- and S-waves at any time step and at any spatial position, which makes this method suitable for target-oriented imaging.Snapshots of synthetic data show that the network-tuned spatial filters can decompose P- and S-waves with improved accuracy compared with other space-domain P-S decomposition methods.Elastic-wave reverse-time migration using P- and S-waves decomposed by the proposed algorithm shows reduced artifacts where there is a high velocity contrast.