地震资料层间多次波压制方法研究进展

2024年 63卷 第No. 6期
阅读:17
查看详情
Research progress of interbed multiples suppression
赵锐锐 陈新哲 向平奥 李勇军 李志娜 李振春
Ruirui ZHAO Xinzhe CHEN Ping'ao XIANG Yongjun LI Zhina LI Zhenchun LI
1. 中国石油天然气集团有限公司超深层复杂油气藏勘探开发技术研发中心, 新疆库尔勒 841000 2. 塔里木油田分公司勘探开发研究院, 新疆库尔勒 841000 3. 中国石油天然气股份有限公司塔里木油田分公司, 新疆库尔勒 841000 4. 深层油气全国重点实验室(中国石油大学(华东)), 山东青岛 266580 5. 中国石油大学(华东)地球科学与技术学院, 山东青岛 266580
1. R&D Center for Ultra-Deep Complex Reservoir Exploration and Development, Petrochina, Korla 841000, China 2. Research Institute of Petroleum Exploration and Development, Tarim Oilfield Company, Petrochina, Korla 841000, China 3. Tarim Oilfield Company, PetroChina, Korla 841000, China 4. State Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, China 5. School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China

层间多次波压制是目前困扰油气地震勘探的难题之一。为推动层间多次波压制方法的发展, 对层间多次波预测及自适应相减方法的研究进展进行了调研, 总结了共聚焦点技术、地表数据分离法、逆散射级数法、虚同相轴法、Marchenko自聚焦方法等备受关注的层间多次波预测方法以及自适应相减法的发展进程, 分析了上述方法的优缺点。共聚焦点技术中层相关算法相比边界算法具有更强的适应性, 但以牺牲计算成本为代价; 逆散射级数法虽然具有较高的多次波预测精度, 但是巨大的计算量限制了其推广应用; 地表数据分离法和虚同相轴法虽然具有较高的计算效率, 但是数据分离过于依赖人工操作; Marchenko自聚焦方法目前在实际应用中尚不成熟。自适应相减方法在一次波和多次波非正交情况下的局限性导致了层间多次波压制方法的诞生。在保证层间多次波压制效果的前提下提高计算效率以及实用性, 是当前层间多次波压制方法的重要发展方向。结合目前研究热点, 层间多次波压制方法与波形反演、深度学习等方法技术的结合可能是未来的发展趋势。

Interbed multiples suppression is a thorny problem in seismic exploration. To promote its development, we investigate the evolution of interbed multiples prediction and adaptive subtraction and give an overview of the methods of high concern, which include common focus point, surface data separation, inverse scattering series, virtual event, and Marchenko autofocusing; we also discuss their advantages and disadvantages. For the common-focus-point method, the layer-related algorithm has stronger adaptability than the boundary-related algorithm, but its computational expense is also high. Inverse scattering series method has high accuracy of multiples prediction, but its application is limited by the large amount of computation. Despite their high computational efficiency, surface data separation and virtual event methods rely too much on manual operation to accomplish data separation. Marchenko autofocusing method is unproved in practical use. The limitations of adaptive subtraction in the context of non-orthogonal primary waves and multiples leads to the generation of inversion-based interbed multiples suppression. The focus is how to improve computational efficiency and practicability on the premise of high accuracy. A potential direction is to combine interbed multiples suppression with waveform inversion and deep learning.

层间多次波压制; 共聚焦点技术法; 地表数据分离法; 逆散射级数法; 虚同相轴法; Marchenko自聚焦; 自适应相减;
interbed multiples suppression; common-focus-point method; surface data separation; inverse scattering series; virtual event method; Marchenko autofocusing; adaptive subtraction;
国家自然科学基金(42074133);中石油重大科技合作项目(ZD2019-183-003)
10.12431/issn.1000-1441.2024.63.06.007