论文详情
一种海上时移地震数据空缺区智能重建方法
石油物探
2025年 64卷 第No. 1期
阅读:22
查看详情
Title
An intelligent vacancy data reconstruction method based on offshore time-lapse seismic data
单位
1.西南石油大学地球科学与技术学院,四川成都610500;
2.油气藏地质及开发工程国家重点实验室,四川成都610500;
3.天然气地质四川省重点实验室,四川成都610500;
4.油气地质与勘探国家级实验教学示范中心,四川成都610500
Organization
1. School of Geoscience and Technology,Southwest Petroleum University,Chengdu 610500,China;
2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Chengdu 610500,China;
3. Sichuan Key Laboratory of Natural Gas Geology,Chengdu 610500,China;
4. National Experimental Teaching Demonstration Center for Oil and Gas Geology and Exploration,Chengdu 610500,China
摘要
时移地震技术作为目前海上剩余油气监测的重要技术之一,可以有效指导油气田开发方案。针对海上时移地震数据采集过程中第二次采集受平台及海底管线影响导致采集的数据出现空缺的问题,首先利用在同一工区两套不同时期采集的地震数据,即早期采集的拖缆地震数据与近期采集的海底节点(ocean bottom node,OBN)地震数据,进行叠前地震数据一致性处理以及叠后全局匹配处理,使其时移差异能有效反映油气开采引起的地震数据变化;再利用神经网络学习上述两套一致性处理后的地震资料非线性映射关系,对大范围连续缺失的OBN地震数据进行数据重建。上述海上时移地震数据空缺区智能重建方法可以有效利用两套数据的相似性恢复缺失的地震数据,同时尽可能地保持时移地震特征,取得了良好的应用效果。
Abstract
Time-lapse seismology is one of the most important techniques for reservoir monitoring and subsequent development plan adjustment.In an offshore time-lapse seismic survey,we use a legacy streamer dataset to reconstruct the gaps,which were related to the restriction of platform and subsea pipelines,in the ocean bottom node (OBN) seismic data acquired recently.Prestack consistency processing and poststack global matching are employed to obtain the time shifts which reflect gas features effectively.The nonlinear mapping relationship between two datasets after consistency processing,which is generated using a neural network,could then be used to reconstruct missing OBN data.The method proposed in this paper can recover missing seismic data effectively and meanwhile preserve time-lapse seismic characteristics as much as possible.A field application demonstrates a good result.
关键词:
时移地震;
时移地震数据处理;
一致性处理;
全局匹配;
神经网络;
地震数据空缺;
数据重建;
Keywords:
time-lapse seismology;
time-lapse data processing;
consistency processing;
global matching;
neural network;
seismic data vacancy;
reconstruction;
基金项目
国家自然科学基金项目“莺琼盆地中深层异常温压地震岩石物理理论及综合智能储层预测方法研究”(U20B2016)和“羌塘盆地格架及沉积结构地球物理成像理论与识别技术研究”(42241206)共同资助。
DOI
10.12431/issn.1000-1441.2025.64.01.003